Square inside

Marcin Michalski, Robert Rałowski, Szymon Żeberski

Wrocław University of Science and Technology
Winter School in Abstract Analysis 2023
Štěkeñ 28.01-04.02.2023

Mycielski J., Algebraic independence and measure, Fundamenta Mathematicae 61 (1967), 165-169.

Theorem (Mycielski)
For every comeager or conull set $G \subseteq[0,1]^{2}$ there exists a perfect set $P \subseteq[0,1]$ such that $P \times P \subseteq G \cup \Delta$.
$\Delta=\{(x, x): x \in[0,1]\}$.

Let $A \in\{2, \omega\}$ and let $T \subseteq A^{<\omega}$ be a tree on A, i.e. for each $\sigma \in T$ we have $\sigma \upharpoonright n \in T$ for all natural n. Body of a tree T is the set

$$
[T]=\left\{x \in A^{\omega}:(\forall n \in \omega)(x \upharpoonright n \in T)\right\}
$$

of all infinite branches of T.

Let $A \in\{2, \omega\}$ and let $T \subseteq A^{<\omega}$ be a tree on A, i.e. for each $\sigma \in T$ we have $\sigma \upharpoonright n \in T$ for all natural n. Body of a tree T is the set

$$
[T]=\left\{x \in A^{\omega}:(\forall n \in \omega)(x \upharpoonright n \in T)\right\}
$$

of all infinite branches of T.
Perfect sets $=$ bodies of perfect trees.

Let $A \in\{2, \omega\}$ and let $T \subseteq A^{<\omega}$ be a tree on A, i.e. for each $\sigma \in T$ we have $\sigma \upharpoonright n \in T$ for all natural n. Body of a tree T is the set

$$
[T]=\left\{x \in A^{\omega}:(\forall n \in \omega)(x \upharpoonright n \in T)\right\}
$$

of all infinite branches of T.
Perfect sets $=$ bodies of perfect trees.
The goal: to switch to 2^{ω} and ω^{ω} and to replace a perfect set with a body of some tree.

Denote

$$
\operatorname{split}(T)=\left\{\sigma \in T:(\exists n, k \in A)\left(n \neq k \& \sigma^{\frown} n, \sigma^{\frown} k \in T\right)\right\} .
$$

Denote

$$
\operatorname{split}(T)=\left\{\sigma \in T:(\exists n, k \in A)\left(n \neq k \& \sigma^{\frown} n, \sigma^{\frown} k \in T\right)\right\} .
$$

Definition

We call a tree $T \subseteq A^{<\omega}$

- a perfect or Sacks tree, if for each $\sigma \in T$ there is $\tau \in T$ such that $\sigma \subseteq \tau$ and $\tau^{\frown} n, \tau^{\sim} k \in T$ for distinct $n, k \in A$;
- uniformly perfect, if it is perfect and for each $n \in \omega$ either $A^{n} \cap T \subseteq \operatorname{split}(T)$ or $\operatorname{split}(T) \cap A^{n}=\emptyset$;
- a Silver tree, if it is perfect and for all $\sigma, \tau \in T$ with $|\sigma|=|\tau|$ we have $\sigma^{\frown} n \in T \Leftrightarrow \tau^{\frown} n \in T$ for all $n \in A$;
- a splitting tree $(A=2)$ if for every $\sigma \in T$ there is $N \in \omega$ such that for each $n>N$ and $i \in\{0,1\}$ there are $\tau_{0}, \tau_{1} \in T$ such that $\sigma \subseteq \tau_{i}^{\sim} i \in T$;
- a Miller tree $(A=\omega)$, if for each $\sigma \in T$ there exists $\tau \in T$ such that $\sigma \subseteq \tau$ and for infinitely many $n \in A$ we have $\tau^{\frown} n \in T$;
- a Laver tree $(A=\omega)$, if there is $\sigma \in T$ such that for each $\tau \in T$ satisfying $\sigma \subseteq \tau$ there are infinitely many $n \in A$ with $\tau^{\frown} n \in T$;

Measure case - Miller trees

Proposition

Let μ be a strictly positive probabilistic measure on ω^{ω}. Then there exists an F_{σ} set F of measure 1 such that $[T] \nsubseteq F$ for every Miller tree T.

Measure case - Sacks trees

Theorem

Let F be a subset of $2^{\omega} \times 2^{\omega}$ of full measure. Then there exists a uniformly perfect tree $T \subseteq 2^{<\omega}$ satisfying $[T] \times[T] \subseteq F \cup \Delta$.

Measure case - Silver trees

Definition

$A \subseteq 2^{\omega}$ is a small set if there is a partition \mathcal{A} of ω into finite sets and a collection $\left(J_{a}\right)_{a \in \mathcal{A}}$ such that $J_{a} \subseteq 2^{a}, \sum_{a \in \mathcal{A}} \frac{\left|J_{a}\right|}{2^{a \mid} \mid}<\infty$ and

$$
A \subseteq\left\{x \in 2^{\omega}:\left(\exists^{\infty} a \in \mathcal{A}\right)\left(x \upharpoonright a \in J_{a}\right)\right\} .
$$

Measure case - Silver trees

Definition

$A \subseteq 2^{\omega}$ is a small set if there is a partition \mathcal{A} of ω into finite sets and a collection $\left(J_{a}\right)_{a \in \mathcal{A}}$ such that $J_{a} \subseteq 2^{a}, \sum_{a \in \mathcal{A}} \frac{\left|J_{a}\right|}{2^{a \mid}}<\infty$ and

$$
A \subseteq\left\{x \in 2^{\omega}:\left(\exists^{\infty} a \in \mathcal{A}\right)\left(x \mid a \in J_{a}\right)\right\} .
$$

Proposition

There exist a small set $A \subseteq 2^{\omega} \times 2^{\omega}$ such that $(A \cap[T] \times[T]) \backslash \Delta \neq \emptyset$ for any Silver tree $T \subseteq 2^{<\omega}$.

Measure case - Silver trees

Definition

$A \subseteq 2^{\omega}$ is a small set if there is a partition \mathcal{A} of ω into finite sets and a collection $\left(J_{a}\right)_{a \in \mathcal{A}}$ such that $J_{a} \subseteq 2^{a}, \sum_{a \in \mathcal{A}} \frac{\left|J_{a}\right|}{2^{a \mid}}<\infty$ and

$$
A \subseteq\left\{x \in 2^{\omega}:\left(\exists^{\infty} a \in \mathcal{A}\right)\left(x \mid a \in J_{a}\right)\right\} .
$$

Proposition

There exist a small set $A \subseteq 2^{\omega} \times 2^{\omega}$ such that $(A \cap[T] \times[T]) \backslash \Delta \neq \emptyset$ for any Silver tree $T \subseteq 2^{<\omega}$.

Proposition

Every closed subset of 2^{ω} of positive Lebesgue measure contains a Silver tree.

Category case - Laver trees

Proposition

There exists a dense G_{δ} set $G \subseteq \omega^{\omega}$ such that $[T] \nsubseteq G$ for every Laver tree T.

Category case - Laver trees

Proposition

There exists a dense G_{δ} set $G \subseteq \omega^{\omega}$ such that $[T] \nsubseteq G$ for every Laver tree T.

Proof.

$G=\left\{x \in \omega^{\omega}:\left(\exists^{\infty} n \in \omega\right)(x(n)=0)\right\}$.

Category case - Silver trees

Lemma

For every Silver tree T there exists a Silver tree $T^{\prime} \subseteq T$ that splits and rests.

Category case - Silver trees

Lemma

For every Silver tree T there exists a Silver tree $T^{\prime} \subseteq T$ that splits and rests.

Proposition

There exists an open dense set $U \subseteq \omega^{\omega} \times \omega^{\omega}$ such that $[T] \times[T] \nsubseteq U \cup \Delta$ for any Silver tree T.

Category case - Silver trees

Lemma

For every Silver tree T there exists a Silver tree $T^{\prime} \subseteq T$ that splits and rests.

Proposition

There exists an open dense set $U \subseteq \omega^{\omega} \times \omega^{\omega}$ such that $[T] \times[T] \nsubseteq U \cup \Delta$ for any Silver tree T.

Proof.

Let supp : $\mathbb{Q} \rightarrow \omega$ be given by supp $(0)=0$ and $\operatorname{supp}(q)=\max \{n \in \omega: q(n) \neq 0\}$ for $q \neq 0$. Let $\left\{\left(q_{1}^{n}, q_{2}^{n}\right): n \in \omega\right\}$ be an enumeration of pairs rationals for which $\operatorname{supp}\left(q_{1}^{n}\right)=\operatorname{supp}\left(q_{2}^{n}\right)$.

Category case - Silver trees

Lemma

For every Silver tree T there exists a Silver tree $T^{\prime} \subseteq T$ that splits and rests.

Proposition

There exists an open dense set $U \subseteq \omega^{\omega} \times \omega^{\omega}$ such that $[T] \times[T] \nsubseteq U \cup \Delta$ for any Silver tree T.

Proof.

Let supp : $\mathbb{Q} \rightarrow \omega$ be given by supp $(0)=0$ and
$\operatorname{supp}(q)=\max \{n \in \omega: q(n) \neq 0\}$ for $q \neq 0$. Let $\left\{\left(q_{1}^{n}, q_{2}^{n}\right): n \in \omega\right\}$ be an enumeration of pairs rationals for which $\operatorname{supp}\left(q_{1}^{n}\right)=\operatorname{supp}\left(q_{2}^{n}\right)$. Set

$$
U=\bigcup_{n \in \omega}\left[\left(q_{1}^{n} \upharpoonright\left(\operatorname{supp}\left(q_{1}^{n}\right)\right)\right)^{\complement}(0,0)\right] \times\left[\left(q_{2}^{n} \upharpoonright\left(\operatorname{supp}\left(q_{1}^{n}\right)\right)\right)^{\complement}(1,1)\right] .
$$

Category case - Miller trees

Theorem

For every comeager set G of $\omega^{\omega} \times \omega^{\omega}$ there exists a Miller tree $T_{M} \subseteq \omega^{<\omega}$ and a uniformly perfect tree $T_{P} \subseteq T_{M}$ such that $\left[T_{P}\right] \times\left[T_{M}\right] \subseteq G \cup \Delta$.

Category case - Miller trees

Theorem

For every comeager set G of $\omega^{\omega} \times \omega^{\omega}$ there exists a Miller tree $T_{M} \subseteq \omega^{<\omega}$ and a uniformly perfect tree $T_{P} \subseteq T_{M}$ such that $\left[T_{P}\right] \times\left[T_{M}\right] \subseteq G \cup \Delta$.

Remark

A Miller tree cannot be replaced with a uniformly perfect Miller tree.

Category case - Miller trees

Theorem

For every comeager set G of $\omega^{\omega} \times \omega^{\omega}$ there exists a Miller tree $T_{M} \subseteq \omega^{<\omega}$ and a uniformly perfect tree $T_{P} \subseteq T_{M}$ such that $\left[T_{P}\right] \times\left[T_{M}\right] \subseteq G \cup \Delta$.

Remark

A Miller tree cannot be replaced with a uniformly perfect Miller tree.

Theorem

There exists a dense G_{δ} set $G \subseteq \omega^{\omega} \times \omega^{\omega}$ such that $\left[T_{1}\right] \times\left[T_{2}\right] \nsubseteq G \cup \Delta$ for any Miller trees T_{1}, T_{2}.

See also
雷 S. Solecki, O. Spinas, Dominating and unbounded free sets, Journal of Symbolic Logic 64 (1999), 75-80.

Category case - splitting trees

Denote

$$
\Delta_{n}=\left\{\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in\left(2^{\omega}\right)^{n}:(\exists i, j \in\{1,2, \ldots, n\})\left(i \neq j \& x_{i}=x_{j}\right)\right\} .
$$

Category case - splitting trees

Denote

$$
\Delta_{n}=\left\{\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in\left(2^{\omega}\right)^{n}:(\exists i, j \in\{1,2, \ldots, n\})\left(i \neq j \& x_{i}=x_{j}\right)\right\} .
$$

Theorem

Let $\left(G_{n}: n>0\right)$ be a sequence of comeager sets, $G_{n} \subseteq\left(2^{\omega}\right)^{n}$ for each $n>0$. Then there exists a uniformly perfect splitting tree $T \subseteq 2^{<\omega}$ such that $[T]^{n} \subseteq G_{n} \cup \Delta_{n}$.

Category case - splitting trees

Denote

$$
\Delta_{n}=\left\{\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in\left(2^{\omega}\right)^{n}:(\exists i, j \in\{1,2, \ldots, n\})\left(i \neq j \& x_{i}=x_{j}\right)\right\} .
$$

Theorem

Let $\left(G_{n}: n>0\right)$ be a sequence of comeager sets, $G_{n} \subseteq\left(2^{\omega}\right)^{n}$ for each $n>0$. Then there exists a uniformly perfect splitting tree $T \subseteq 2^{<\omega}$ such that $[T]^{n} \subseteq G_{n} \cup \Delta_{n}$.

Sketch of a proof.

On a blackboard if time allows.

Application

Corollary

There is a uniformly perfect splitting tree $T \subseteq 2^{<\omega}$ such that $|[T] \cap(x+[T])| \leq 1$ for $x \neq 0$.

Thank you for your attention!

圊 Michalski M., Rałowski R. Żeberski Sz., Mycielski among trees, Mathematical Logic Quarterly 67 (3) (2021), 271-281.

