Square inside

Marcin Michalski, Robert Rałowski, Szymon Żeberski

Wrocław University of Science and Technology

Winter School in Abstract Analysis 2023 Štěkeň 28.01-04.02.2023

B> B

Motivation Setup Results Thanks!	2D Mycielski Theorem
---	----------------------

Mycielski J., Algebraic independence and measure, Fundamenta Mathematicae 61 (1967), 165-169.

Theorem (Mycielski)

For every comeager or conull set $G \subseteq [0,1]^2$ there exists a perfect set $P \subseteq [0,1]$ such that $P \times P \subseteq G \cup \Delta$.

э

$$\Delta = \{ (x, x) : x \in [0, 1] \}.$$

Motivation Setup Results Thanks!	Notions and definitions
---	-------------------------

Let $A \in \{2, \omega\}$ and let $T \subseteq A^{<\omega}$ be a tree on A, i.e. for each $\sigma \in T$ we have $\sigma \upharpoonright n \in T$ for all natural n. Body of a tree T is the set

$$[T] = \{x \in A^{\omega} : (\forall n \in \omega)(x \upharpoonright n \in T)\}$$

< 注→

I naa

Image: A math a math

of all infinite branches of T.

ons and definitions	
	ons and definitions

Let $A \in \{2, \omega\}$ and let $T \subseteq A^{<\omega}$ be a tree on A, i.e. for each $\sigma \in T$ we have $\sigma \upharpoonright n \in T$ for all natural n. Body of a tree T is the set

$$[T] = \{x \in A^{\omega} : (\forall n \in \omega)(x \upharpoonright n \in T)\}$$

글 > 글

of all infinite branches of T. Perfect sets = bodies of perfect trees.

Let $A \in \{2, \omega\}$ and let $T \subseteq A^{<\omega}$ be a tree on A, i.e. for each $\sigma \in T$ we have $\sigma \upharpoonright n \in T$ for all natural n. Body of a tree T is the set

$$[T] = \{x \in A^{\omega} : (\forall n \in \omega)(x \upharpoonright n \in T)\}$$

of all infinite branches of T.

Perfect sets = bodies of perfect trees.

The goal: to switch to 2^ω and ω^ω and to replace a perfect set with a body of some tree.

< D > < A > < B >

→ Ξ →

I naa

Motivation
Setup
Results
Thanks!

< ロ > < 回 > < 回 > < 回 > < 回 > <</p>

= 990

Denote

$$\mathsf{split}(T) = \{ \sigma \in T : (\exists n, k \in A) (n \neq k \& \sigma^{\frown} n, \sigma^{\frown} k \in T) \}.$$

Notions and definitions

Denote

$$\mathsf{split}(T) = \{ \sigma \in T : (\exists n, k \in A) (n \neq k \& \sigma^{\frown} n, \sigma^{\frown} k \in T) \}.$$

Definition

We call a tree $T \subseteq A^{<\omega}$

- a perfect or Sacks tree, if for each $\sigma \in T$ there is $\tau \in T$ such that $\sigma \subseteq \tau$ and $\tau \frown n, \tau \frown k \in T$ for distinct $n, k \in A$;
- uniformly perfect, if it is perfect and for each $n \in \omega$ either $A^n \cap T \subseteq \operatorname{split}(T)$ or $\operatorname{split}(T) \cap A^n = \emptyset$;
- a Silver tree, if it is perfect and for all $\sigma, \tau \in T$ with $|\sigma| = |\tau|$ we have $\sigma \cap n \in T \Leftrightarrow \tau \cap n \in T$ for all $n \in A$;
- a splitting tree (A = 2) if for every $\sigma \in T$ there is $N \in \omega$ such that for each n > N and $i \in \{0, 1\}$ there are $\tau_0, \tau_1 \in T$ such that $\sigma \subseteq \tau_i \ i \in T$;

• a Miller tree $(A = \omega)$, if for each $\sigma \in T$ there exists $\tau \in T$ such that $\sigma \subseteq \tau$ and for infinitely many $n \in A$ we have $\tau \frown n \in T$;

efinitions

3

a Laver tree (A = ω), if there is σ ∈ T such that for each τ ∈ T satisfying σ ⊆ τ there are infinitely many n ∈ A with τ[∩]n ∈ T;

Motivation Setup Measure case Results Category case Thanks!

Measure case - Miller trees

Proposition

Let μ be a strictly positive probabilistic measure on ω^{ω} . Then there exists an F_{σ} set F of measure 1 such that $[T] \not\subseteq F$ for every Miller tree T.

イロン イボン イヨン イヨン

3

Measure case Category case

◆□▶ ◆□▶ ◆ヨ▶ ◆ヨ▶ ヨ のなべ

Measure case - Sacks trees

Theorem

Let F be a subset of $2^{\omega} \times 2^{\omega}$ of full measure. Then there exists a uniformly perfect tree $T \subseteq 2^{<\omega}$ satisfying $[T] \times [T] \subseteq F \cup \Delta$.

Measure case Category case

(ロ) (同) (目) (日) (日) (0) (0)

Measure case - Silver trees

Definition

 $A \subseteq 2^{\omega}$ is a small set if there is a partition \mathcal{A} of ω into finite sets and a collection $(J_a)_{a \in \mathcal{A}}$ such that $J_a \subseteq 2^a$, $\sum_{a \in \mathcal{A}} \frac{|J_a|}{2^{|a|}} < \infty$ and

 $A \subseteq \{x \in 2^{\omega} : (\exists^{\infty} a \in \mathcal{A})(x \upharpoonright a \in J_a)\}.$

Measure case Category case

Measure case - Silver trees

Definition

 $A \subseteq 2^{\omega}$ is a small set if there is a partition \mathcal{A} of ω into finite sets and a collection $(J_a)_{a \in \mathcal{A}}$ such that $J_a \subseteq 2^a$, $\sum_{a \in \mathcal{A}} \frac{|J_a|}{2^{|a|}} < \infty$ and

$$A\subseteq \{x\in 2^\omega:\;(\exists^\infty a\in \mathcal{A})(x\restriction a\in J_a)\}.$$

Proposition

There exist a small set $A \subseteq 2^{\omega} \times 2^{\omega}$ such that $(A \cap [T] \times [T]) \setminus \Delta \neq \emptyset$ for any Silver tree $T \subseteq 2^{<\omega}$.

3

Measure case Category case

Measure case - Silver trees

Definition

 $A \subseteq 2^{\omega}$ is a small set if there is a partition \mathcal{A} of ω into finite sets and a collection $(J_a)_{a \in \mathcal{A}}$ such that $J_a \subseteq 2^a$, $\sum_{a \in \mathcal{A}} \frac{|J_a|}{2^{|a|}} < \infty$ and

$$A\subseteq \{x\in 2^\omega:\;(\exists^\infty a\in \mathcal{A})(x\restriction a\in J_a)\}.$$

Proposition

There exist a small set $A \subseteq 2^{\omega} \times 2^{\omega}$ such that $(A \cap [T] \times [T]) \setminus \Delta \neq \emptyset$ for any Silver tree $T \subseteq 2^{<\omega}$.

Proposition

Every closed subset of 2^{ω} of positive Lebesgue measure contains a Silver tree.

《口》 《聞》 《臣》 《臣》

3

Measure case Category case

Category case - Laver trees

Proposition

There exists a dense G_{δ} set $G \subseteq \omega^{\omega}$ such that $[T] \not\subseteq G$ for every Laver tree T.

Measure case Category case

◆□ > ◆□ > ◆ 三 > ◆ 三 > ● ○ ○ ○ ○

Category case - Laver trees

Proposition

There exists a dense G_{δ} set $G \subseteq \omega^{\omega}$ such that $[T] \not\subseteq G$ for every Laver tree T.

Proof.

$$G = \{x \in \omega^{\omega} : (\exists^{\infty} n \in \omega)(x(n) = 0)\}.$$

Measure case Category case

Ξ.

イロン イボン イヨン イヨン

Category case - Silver trees

Lemma

For every Silver tree T there exists a Silver tree $T' \subseteq T$ that splits and rests.

Measure case Category case

• = • • = •

3

Category case - Silver trees

Lemma

For every Silver tree T there exists a Silver tree $T' \subseteq T$ that splits and rests.

Proposition

There exists an open dense set $U \subseteq \omega^{\omega} \times \omega^{\omega}$ such that $[T] \times [T] \not\subseteq U \cup \Delta$ for any Silver tree T.

Measure case Category case

Category case - Silver trees

Lemma

For every Silver tree T there exists a Silver tree $T' \subseteq T$ that splits and rests.

Proposition

There exists an open dense set $U \subseteq \omega^{\omega} \times \omega^{\omega}$ such that $[T] \times [T] \not\subseteq U \cup \Delta$ for any Silver tree T.

Proof.

Let supp : $\mathbb{Q} \to \omega$ be given by supp $(\mathbb{O}) = 0$ and supp $(q) = \max\{n \in \omega : q(n) \neq 0\}$ for $q \neq \mathbb{O}$. Let $\{(q_1^n, q_2^n) : n \in \omega\}$ be an enumeration of pairs rationals for which supp $(q_1^n) = \operatorname{supp}(q_2^n)$.

Measure case Category case

Category case - Silver trees

Lemma

For every Silver tree T there exists a Silver tree $T' \subseteq T$ that splits and rests.

Proposition

There exists an open dense set $U \subseteq \omega^{\omega} \times \omega^{\omega}$ such that $[T] \times [T] \not\subseteq U \cup \Delta$ for any Silver tree T.

Proof.

Let supp : $\mathbb{Q} \to \omega$ be given by supp $(\mathbb{O}) = 0$ and supp $(q) = \max\{n \in \omega : q(n) \neq 0\}$ for $q \neq \mathbb{O}$. Let $\{(q_1^n, q_2^n) : n \in \omega\}$ be an enumeration of pairs rationals for which supp $(q_1^n) = \operatorname{supp}(q_2^n)$. Set

$$U = \bigcup_{n \in \omega} \big[\big(q_1^n \upharpoonright \big(\mathsf{supp}(q_1^n) \big) \big)^\frown (0,0) \big] \times \big[\big(q_2^n \upharpoonright \big(\mathsf{supp}(q_1^n) \big) \big)^\frown (1,1) \big].$$

Measure case Category case

(ロ) (同) (目) (日) (日) (0) (0)

Category case - Miller trees

Theorem

For every comeager set G of $\omega^{\omega} \times \omega^{\omega}$ there exists a Miller tree $T_M \subseteq \omega^{<\omega}$ and a uniformly perfect tree $T_P \subseteq T_M$ such that $[T_P] \times [T_M] \subseteq G \cup \Delta$.

Measure case Category case

-

Category case - Miller trees

Theorem

For every comeager set G of $\omega^{\omega} \times \omega^{\omega}$ there exists a Miller tree $T_M \subseteq \omega^{<\omega}$ and a uniformly perfect tree $T_P \subseteq T_M$ such that $[T_P] \times [T_M] \subseteq G \cup \Delta$.

Remark

A Miller tree cannot be replaced with a uniformly perfect Miller tree.

Measure case Category case

Category case - Miller trees

Theorem

For every comeager set G of $\omega^{\omega} \times \omega^{\omega}$ there exists a Miller tree $T_M \subseteq \omega^{<\omega}$ and a uniformly perfect tree $T_P \subseteq T_M$ such that $[T_P] \times [T_M] \subseteq G \cup \Delta$.

Remark

A Miller tree cannot be replaced with a uniformly perfect Miller tree.

Theorem

There exists a dense G_{δ} set $G \subseteq \omega^{\omega} \times \omega^{\omega}$ such that $[T_1] \times [T_2] \not\subseteq G \cup \Delta$ for any Miller trees T_1, T_2 .

See also

S. Solecki, O. Spinas, Dominating and unbounded free sets, Journal of Symbolic Logic 64 (1999), 75-80.

Measure case Category case

イロン イロン イヨン イヨン

Ξ.

Category case - splitting trees

Denote

$$\Delta_n = \{(x_1, x_2, ..., x_n) \in (2^{\omega})^n : (\exists i, j \in \{1, 2, ..., n\}) (i \neq j \& x_i = x_j)\}.$$

Measure case Category case

Category case - splitting trees

Denote

$$\Delta_n = \{ (x_1, x_2, ..., x_n) \in (2^{\omega})^n : (\exists i, j \in \{1, 2, ..., n\}) (i \neq j \& x_i = x_j) \}.$$

Theorem

Let $(G_n : n > 0)$ be a sequence of comeager sets, $G_n \subseteq (2^{\omega})^n$ for each n > 0. Then there exists a uniformly perfect splitting tree $T \subseteq 2^{<\omega}$ such that $[T]^n \subseteq G_n \cup \Delta_n$.

Measure case Category case

Category case - splitting trees

Denote

$$\Delta_n = \{ (x_1, x_2, ..., x_n) \in (2^{\omega})^n : (\exists i, j \in \{1, 2, ..., n\}) (i \neq j \& x_i = x_j) \}.$$

Theorem

Let $(G_n : n > 0)$ be a sequence of comeager sets, $G_n \subseteq (2^{\omega})^n$ for each n > 0. Then there exists a uniformly perfect splitting tree $T \subseteq 2^{<\omega}$ such that $[T]^n \subseteq G_n \cup \Delta_n$.

イロン イボン イヨン イヨン

3

Sketch of a proof.

On a blackboard if time allows.

	Motivation Setup Results Thanks!	Measure case Category case		
Application				

э

- ∢ ≣ →

Image: A math a math

Corollary

There is a uniformly perfect splitting tree $T \subseteq 2^{<\omega}$ such that $|[T] \cap (x + [T])| \le 1$ for $x \ne 0$.

Thank you for your attention!

Michalski M., Rałowski R. Żeberski Sz., Mycielski among trees, Mathematical Logic Quarterly 67 (3) (2021), 271-281.

э